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1. INTRODUCTION

There are many di$culties encountered in the application of perturbation
techniques to the study of strong non-linear problems. Of these, one of the most
frustrating is the fact that all classical perturbation techniques strongly rely on the
assumption of the small parameter. To overcome the limitations, many novel
techniques have been proposed in recent years. For example, Cheung et al. [1]
propose a modi"ed Lindstedt}Poincare method, and He [2, 3] proposes a
homotopy perturbation technique. In the present paper, we will propose a new
perturbation technique, which is valid not only for small parameters, but also for
very large values of parameters.

2. BASIC IDEAS OF THE NEW METHOD

To illustrate the basic idea of the present note, we consider the well-known
Du$ng equation [4, 5]

uA#u#eu3"0, u(0)"A, u@(0)"0. (1)

For small values of e, the classical perturbation methods are looking for a solution
of equation (1) having the form

u"u
0
#eu

1
#e2u

2
#2, (2)

a power series in e with coe$cients that are independent of e. Clearly, the leading
term u

0
is the solution of the linear approximation

uA#u"0, u(0)"A, u@(0)"0 (3)

by setting e"0. Remember that in equation (2) the second term eu
1

is a correction
to the leading term u

0
, and so on. Due to the fact u

0
is obtained upon setting e"0,

which means that u
0

can be considered as an approximated solution to the original
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equation (1) only when e;1, the approximations obtained by perturbation
methods are valid only for the case e;1.

If, however, the leading term u
0

in equation (2) is an approximate solution of
equation (1) regardless of the values of the parameter e, the obtained results are
valid regardless of the parameters. But how to search for such a leading term u

0
?

Supposing that the angular frequency of the system is b, which is unknown to be
further determined, we can obtain the linearized Du$ng equation, which reads

uA#b2u"0. (4)

In view of equation (4), we can rewrite equation (1) in the form

uA#b2u#e(u3#gu)"0, u(0)"A, u@(0)"0, (5)

where

b2#eg"1, (6)

where g is an unknown constant.
Supposing that the solution of equation (5) can also be expressed in the form

u"u
0
#eu

1
#e2u

2
#2, (7)

where the parameter e need not be small in the present study.
Substituting equation (7) into equation (5) and equating coe$cients of like

powers of e yield the following equations:

uA
0
#b2u

0
"0, u

0
(0)"A, u@

0
(0)"0, (8)

uA
1
#b2u

1
#u3

0
#gu

0
"0, u

1
(0)"0, u@

1
(0)"0. (9)

Solving equation (8) results in

u
0
"A cos bt. (10)

Equation (9), therefore, can be rewritten as

uA
1
#b2u

1
#(3

4
A2#g)A cos bt#1

4
A3 cos 3bt"0. (11)

Avoiding the presence of a secular term needs

g"!3
4

A2 . (12)

Solving equation (11), we obtain

u
1
"!

A3

32b2
(cos bt!cos 3bt). (13)

If, for example, its "rst order approximation is su$cient, then we have

u"A cos bt!
eA3

32b2
(cos bt!cos 3bt), (14)

where the angular frequency can be written in the form

b"J1!eg"J1#3
4

eA2 . (15)
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Observe that for small e, i.e., 0(e;1, it follows that

b"1#3
8

eA2. (16)
Consequently, in this limit, the present method gives exactly the same results as

the standard Lindstedt}Poincare method [4, 5]. To illustrate the remarkable
accuracy of the result obtained, we compare the approximate period

¹"

2n

J1#3eA2/4
(17)

with the exact one [2]

¹
ex
"

4

J1#eA2 P
n@2

0

dx

J1!k sin2 x
with k"

eA2

2(1#eA2)
. (18)

What is rather surprising about the remarkable range of validity of equation (17)
is that the actual asymptotic period ePR also has high accuracy.

lim
e?=

¹
ex
¹

" lim
e?= G

J1#3
4

eA2

2n
4

J1#eA2 P
n@2

0

dx

J1!k sin2xH
"

2J3/4
n P

n@2

0

dx

J1!0)5 sin2 x
"0)9294.

Therefore, for any value of e, it can be easily proved that the maximal relative
error of the period (17) is less than 7%.

3. HIGH ORDER APPROXIMATIONS

This section is hinted by an unknown referee. As pointed out by the referee the
above procedure cannot give a second order approximation solution because the
secular term occurring in the second perturbation equation cannot be eliminated.
In order to give a general and versatile procedure, we will apply the Lindstedt}
Poincare method [1, 4, 5].

Assume that b2 and the solution of equation (5) can be written in the forms

b2"u2
0
#eu

1
#e2u

2
#2, (19)

u"u
0
#eu

1
#e2u

2
#2. (20)

Substituting equations (19) and (20) into equation (5),

(uA
0
#euA

1
#e2uA

2
#2)#(u2

0
#eu

1
#e2u

2
#2) (u

0
#eu

1
#e2u

2
#2)

#e(u
0
#eu

1
#e2u

2
#2)3#eg(u

0
#eu

1
#e2u

2
#2)"0. (21)

Collecting coe$cients of equal powers of e, and setting each of the coe$cients of
e equal to zero in equation (21),

uA
0
#u2

0
u
0
"0, uA

1
#u2

0
u
1
#u

1
u
0
#u3

0
#gu

0
"0, (22, 23)

uA
2
#u2

0
u
2
#u

1
u
1
#u

2
u
0
#3u2

0
u
1
#gu

1
"0. (24)
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The initial conditions are replaced by

u
0
(0)"A, u@

0
(0)"0, (25)

n
+
i/1

u
i
(0)"0,

n
+
i/1

u@
i
(0)"0. (26)

The leading term u
0

can be readily obtained

u
0
(t)"A cos u

0
t. (27)

The substitution of equation (27) in equation (23) results in

uA
1
#u2

0
u
1
"!(u

1
#g)A cos u

0
t!A3 cos3 u

0
t

"!(u
1
#g#3

4
A2)A cos u

0
t!1

4
A3 cos 3u

0
t. (28)

To eliminate the secular term needs

u
1
"!(g#3

4
A2). (29)

Then, we obtain a particular solution of equation (28), which reads

u
1
"

A3

32u2
0

cos 3u
0
t . (30)

Substituting equations (27) and (30) into equation (24) yields

uA
2
#u2

0
u
2
"!(u

1
#g)

A3

32u2
0

cos 3u
0
t!u

2
A cos u

0
t!

3A5

32u2
0

cos2 u
0
t cos 3u

0
t

"!Au1
#g#

3A2

2 B
A3

32u2
0

cos 3u
0
t!Au2

#

3A4

128u2
0
BA cosu

0
t

#

3A5

128u2
0

cos 5u
0
t. (31)

Avoiding the presence of a secular term needs

u
2
"!

3A4

128u2
0

. (32)

If, for example, its second order approximation is su$cient, then the initial
conditions for equation (31) can be expressed as

u
2
(0)"!

A3

32u2
0

, u@
0
(0)"0. (33)

Solving equation (31) with the initial conditions (33), we obtain

u
2
"Au1

#g#
3A2

2 B
A3

256u3
0

cos 3u
0
t#

3A5

3072u3
0

cos 5u
0
t#B cosu

0
t, (34)
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where the constant B can be written in the form

B"!Au1
#g#

3A2

2 B
A3

256u3
0

!

3A5

3072u3
0

#

A3

32u2
0

,

"!

3A5

1024u3
0

!

3A5

3072u3
0

#

A3

32u2
0

,

"!

A5

256u3
0

#

A3

32u2
0

. (35)

Substituting u
1

and u
2

into equation (19), and in view of the identity b2#eg"
1, we have

u2
0
"b2!eu

1
!e2u

2
,

"b2#e(g#3
4
A2)#

3e2A4

128u2
0

,

"1#3
4

eA2#
3e2A4

128u2
0

. (36)

The angular frequency u
0
, therefore, can be solved from the above relation (36):

u
0
"S1

2
(1#3

4
eA2)#1

2S(1#3
4
eA2)2#

3e2A4

32
,

"S1
2
(1#3

4
eA2)#1

2S1#3
2
eA2#

21e2A4

32
. (37)

We, therefore, obtain the following second order approximate solution:

u(t)"A cos u
0
t#

eA3

32u2
0

cos 3u
0
t

#e2C
3A5

1024u3
0

cos 3u
0
t#

3A5

3072u3
0

cos 5u
0
t#B cosu

0
tD, (38)

where u
0
, u

1
, u

2
and B are de"ned by equations (37), (29), (32) and (35) respectively.

The period of the solution reads

¹"

2n

J1
2
(1#3

4
eA2)#1

2
J1#3

2
eA2#21

32
e2A4

. (39)

Observe that for small e, the present method gives exactly the same results as the
standard Lindstedt}Poincare method [4, 5]. And for relatively large values of the
parameter, the present method gives almost the same results as the modi"ed
Lindstedt}Poincare method [1], from which the following period can be obtained:

¹"

2n

J1/(1!a)(1! 1
24

a2! 17
13824

a4)
with a"

3
4
eA2

1#3
4
eA2

. (40)
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To compare with the exact solution, we have

lim
e?=

¹
ex
¹

" lim
e?=

G
J1

2
(1#3

4
eA2)#1

2
J1#3

2
eA2#(21e2A4/32)

2n

4

J1#eA2 P
n@2

0

dx

J1!k sin2 xH,

"

2J1
2
]3

4
#1

2
#J21

32
n

]1)68575"0)9478. (41)

Therefore, for any value of e, the maximal relative error of the period is less than
5)2%.

4. COMPARISON WITH THE VARIATIONAL ITERATION METHOD

The second order approximate solution is more accurate than the "rst order
approximate solution obtained by the variational iteration method [6, 7]. The
period of Du$ng equation obtained by the variational iteration method reads [7]

¹"

2n

J(10#7eA2#J(64#104eA2#49e2A4)/18

The maximal relative error of the period is less than 5)7%. Though the accuracy
can reach a very high level if its second order approximation can be obtained by the
variational iteration method, the procedure is too cumbersome for high order
approximations. However, in the present study, we can readily obtain its third or
higher order approximate solutions without very cumbersome procedures.

5. CONCLUSION

In this paper, we have tentatively presented a kind of new perturbation
technique, which does not depend upon the assumption of small parameters.
Though the solution of non-linear equations is assumed to have the same form as
that of classical perturbation methods, in our study the parameter e does not need
to be small, and the leading term u

0
is obtained from the linearized equation, not

only by setting e"0. This is the di!erence between the new technique and old ones.
The well-known Du$ng equation is illustrated as an example; the results reveal
that even its "rst order approximation has high accuracy; the maximal relative
error of the period is less than 7% even when the parameter ePR.
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